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In statistical analyses the researcher should nor-
mally use all the relevant information in the data. This 
argument has been used to advise against the habit of 
dichotomizing (approximately) continuous variables. 
However, if, for instance, a continuous variable is not 
normally distributed, it is possible that an optimal di-
chotomization can reveal relationships between vari-
ables otherwise obscured. Two analytical situations 
when this might apply were treated: 1. The study of 
the relationship between an independent dichotomous 
grouping variable and a dependent continuous variable 
and 2. the discrimination between two groups by iden-
tifying an optimal cutpoint in one or more continuous 
variables, treated as the predictor(s). For these pur-
poses, cutpoint analysis (CPA) is introduced as a 
method for finding an optimal categorization of a con-
tinuous variable together with a computer package 
(ROPstat) to carry out the analysis. Three empirical 
examples are given that show the usefulness of CPA as 
compared to conventional analyses. 
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This paper takes its starting point from either of two analytical questions: 

Case 1: A dichotomous grouping variable is regarded as the inde-
pendent variable and it is asked how two groups differ in a continuous 
dependent variable. 

Case 2: A grouping variable is regarded as the dependent variable 
and it is asked how well you can discriminate between the groups us-
ing information about the values of a continuous variable, which is re-
garded as the independent variable, that is, the predictor of group 
membership. Of course, in practice the continuous variable is usually 
not really continuous, by “continuous” we mean here a variable that is 
at an approximate interval scale level and taking many values, or is at 
least ordinal, taking many values.  

Case 1 is often addressed by a two-sample t-test of the mean difference and Case 
2 is frequently covered by discriminant analysis (DA) or logistic regression analysis 
(LRA). However, it must be assumed that the population means carry the important 
information about group differences in the first case and directly using the continu-
ous variable is the best way of representing the information contained in it in the 
second. 

We claim that sometimes in Case 1 or 2, the information value of the continu-
ous variable is not maximized by treating it as an interval scale variable and work-
ing only with means but instead by an optimal categorization of its value range. By 
“information value” we mean all possible information by which one can draw con-
clusions from one variable to the other. Such a situation can occur in Case 1 when 
group membership relates to the value of the continuous dependent variable differ-
ently in various ranges of it. It might be well that there are no mean differences be-
tween groups but still the percentages belonging to one category of the categorized 
continuous variable vary between groups (see intervals ( )13; P− , ( )1 2; P P , and 

( )2; 3P  in Figure). This line of reasoning receives some support from the not infre-
quent finding that dichotomous variables, as compared to the corresponding con-
tinuous variables, can be surprisingly good at detecting relationships between vari-
ables (Farrington–Loeber [2000]). In Case 2 an appropriately categorized version 
of the continuous variable may be more useful to discriminate between the groups 
than the original variable. This can occur when there are threshold effects of the 
independent variable.  
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The purpose of the present paper is to present a method and a computer program 
to identify optimal cutpoints for categorizing a continuous variable and evaluating 
the usefulness of this categorization. This is done for each of the two cases described 
formerly and the method is called cutpoint analysis (CPA). We will only treat the 
case when the grouping variable is dichotomous but the findings are easily extended 
to the multi-group case.  

First we present a brief discussion of the distributional conditions of the continu-
ous variable in the different groups that must hold for the categorization approach to 
possibly detect group differences otherwise not detected or achieve a discrimination 
otherwise not achieved. 

We note that in CPA the restrictive assumption of interval scaled continuity can 
be relaxed. The minimal constraint imposed is ordinality. 

1. Necessary conditions for preferring  
an optimal categorization method  

Case 1. Suppose one is interested in comparing Group A and Group B with re-
gard to the values of a quantitative variable X. Let X be denoted in Group A by AX , 
and in Group B by BX . If AX  and BX  are normally distributed and σ σA B= , the 
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only difference that can occur between the distributions of AX  and BX  is a mean 
difference, denoted by d: 

                                                        ( ) ( )A BF x F x d= + ,  /1/ 

for the distribution functions AF , and BF  for all possible values x, and for some 
value of d. 

If the assumption of normality holds but variance homogeneity is strongly vio-
lated, large differences between the two distributions can occur even under μ μA B= . 
(See Figure.) 

If the assumption of normality is seriously violated, which occurs quite frequently 
(Micceri [1989]), then several situations can occur: Group A and Group B can differ in 
several special ways in terms of the distribution of X also when μ μA B= . One such 
type of difference is when Group A members exist with a substantially lower or higher 
proportion under (or above) a certain value c than Group B members, that is when 

( ) ( )A BF c F c<  or ( ) ( )A BF c F c> . 

If such a cutpoint c exists on the scale of X, it suggests that different ranges of the 
scale of X represent different qualities. The exploration of one or more cutpoints over 
the range of X in relation to the distribution of AX  and BX  may then provide impor-
tant information about the relationship between the independent and dependent vari-
ables. 

It is also important to note that if AX  or BX  is non-normal, the inequality 

                                                      ( ) ( )A BF c F c≠   /2/ 

for some value of c can hold even if the population means of the two groups are 
equal, that is, μ μA B= . Accordingly, the violation of normality is always an indica-
tion that differences between AF  and BF  other than a mean difference may occur. 

Case 2. Whenever /2/ holds for some value c, this can serve as information for 
discriminating between Group A and Group B. If AX  and BX  are normally distrib-
uted, and variance homogeneity holds, then μ μA B−  contains all information regard-
ing the differences between Group A and Group B. However, if these assumptions 
are violated, identification of values c for which /2/ holds may suggest that there is a 
better rule for discriminating Group A and Group B than the one obtained in standard 
DA (Farrington–Loeber [2000]).  



A METHOD TO MAXIMIZE THE INFORMATION OF A CONTINUOUS VARIABLE 

HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 16 

105 

2. Description of the CPA method 

Case 1. It is helpful if prior knowledge exists about defining the range in which the 
two groups differ. In a substantial portion of cases, however, the researcher has no idea 
about the locations of the optimal cutpoints over the range of the dependent variable X 
but still their existence might be surmised and merit investigation. A simple solution 
would be to compare the two distributions in all of the observed values of X, but this 
approach would necessarily yield high alpha error inflation, which is statistically unac-
ceptable. By the CPA method presented here one can search for cutpoints discriminat-
ing sharply the two distributions without the danger of alpha inflation. 

The main idea of CPA is as follows. 

1. Chose a limited number of cutpoints ( 1c , …, kc ) from the value 
range of variable X. 

2. For each ic  ( 1, , i k= … ) dichotomize X at cutpoint ic , defining 
variable iX  as follows: 0iX =  if iX c<  and 1iX =  if iX c≥ . 

3. Compare Group A and Group B in terms of each iX  by perform-
ing a 2×2 chi-square test or a Fisher-exact test, determining the p-value 
of the significance. 

4. In order to avoid alpha inflation, multiply p by k, the number of 
all cutpoints, that is, the number of performed tests: adjp k p= ⋅ . This 

is the well-known Bonferroni method for adjusting p-values in multi-
ple comparisons (Maxwell–Delaney [2004] pp. 202–208). 

The only questions left open are the choice of the value k and the selection of the 
ic  ( 1, , i k= … ) cutpoints. Whenever variable X has Xk  different values, and Xk  is 

less than maxk , the maximal allowed value for k is set to Xk k= . In all other cases, 
set maxk k= . As a rule of thumb – based on our empirical experience – we suggest 
that the maximal allowed value for k be 10 in most comparisons, that is, 10maxk = . 
Increasing the value of k would decrease the power of CPA, and a decrease of its 
value may increase the chance that relevant cutpoint(s) will be unidentified. In a later 
section we will also provide some empirical support to this choice. 

In the identification process of the k cutpoints, we propose the following two cri-
teria if the number of different values of variable X in the sample exceeds maxk : 

1. Let 1 εc x≥  and 1 εkc x −≤ , where εx  and 1 εx −  are percentile val-
ues in the empirical pooled distribution of variable X with certain small ε 
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values ( ε 0 20.< ). Hence, we do not compare the groups at the lower 
and upper ε part of the pooled distribution. The value of ε can be fixed 
freely by the user – its recommended value may be between 0.01 and 
0.05, depending on the sample size (in larger samples ε can be smaller, 
enabling CPA to detect differences between the distributions over a lar-
ger range of X values). In ROPstat the default value for ε  is 0.025. 

2. The estimated ( )1i iP c X c +≤ ≤  probabilities, where 
1 1i k≤ ≤ − , should be as similar as possible in the total sample con-
taining both groups. 

The description of the computer program can be found in the Appendix. For more de-
tails about the program output, see the empirical examples provided in the next section. 

Case 2. If the grouping variable is regarded as the dependent variable, an impor-
tant aim of the analysis can be to predict group membership based on the value of the 
continuous variable. This model is well-known, for instance, in research evaluation 
and comparison of the performance of diagnostic tests (DeLong–DeLong–Clarke-
Pearson [1988]). 

The key concepts are as follows. One of the two groups is regarded as the crite-
rion group, the other as the control group. Based on the continuous variable X, it is 
decided if a subject belongs to the criterion group or not. The decision is made by 
means of a threshold value cx , on the scale of X. Subjects having X values greater 
than or equal to cx  will be regarded as belonging to the criterion group. A threshold 
value cx  works well if most subjects from the criterion group will be judged as be-
longing to it, in other words, if 

                                     Sensitivity ( ) ( )criterion groupc cx Pr X x= ≥  /3/ 

is close to 1, and most subjects from the control group will be judged as not belong-
ing to the criterion group, that is, if 

                                Sensitivity ( ) ( )1 control groupc cx Pr X x= − ≥   /4/ 

is close to 1. The choice of an appropriate threshold value cx  can be made by means 
of a receiver operating characteristic (ROC) curve (DeLong–DeLong–Clarke-
Pearson [1988]). 

For an optimal cx  value, the ( )cPr X x≥  proportions for the criterion and con-
trol group might differ substantially. Accordingly, cutpoints identified in a CPA will 
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carry diagnostic information for discriminating the two groups. Starting from several 
continuous variables to be used for the group discrimination and then creating one or 
more new dichotomous variables by means of the identified cutpoints, the set of 
these derived variables may serve as predictor variables in a DA or LRA for arriving 
at an efficient discrimination. 

3. Examples 

Example 1. The femininity of applicants to psychology major. In an examination of 
admittance to the Psychology major at Eötvös Loránd University, Budapest in 1981, 
the number of males and females were 16m = , and 78n = , respectively. Among these 
94 applicants, 12 males and 70 females filled out a short Hungarian version (including 
300 items) of the California Personality Inventory (SCPI) (Oláh [1985]). One of the 
scales of SCPI is “femininity” (Fem), which informs about the feminine character and 
focus of the interest of the subject. In order to test the validity of this scale, we com-
pared the male and female samples. For testing the equality of theoretical means (the 
sample means were 12.08 for males and 14.00 for females), the two-sample t-test 
( ( )80 2 954t .= , 0 0041p .= ) and the Welch test ( ( )13 2 372W .= , 0 0337p .= ) were 
applied. For examining the stochastic equality of males and females, the Mann–
Whitney test ( 2 339z .= , 0 019p .= ) and the Brunner–Munzel test ( ( )12 2 108BM .= , 

0 0566p .= ) were performed (about stochastic equality, see Vargha– Delaney [1998], 
[2000]). The estimated A measure of stochastic superiority, which assesses the stochas-
tic dominance of males versus females in terms of the Fem scale was 0.29. This shows 
that if we compare two randomly selected male and female persons among the appli-
cants, the chance of having a larger male Fem score is about 0.29, and the chance of 
having a larger female score is about 0.71. 

For a detailed comparison of the two distributions, a cutpoint analysis was per-
formed by means of the group comparison module of ROPstat. The program divides 
the scale of the dependent variable, X into many narrow intervals so that the cut-
points define intervals with as equal proportion of the total sample as is possible, and 
if the number of the different values of X does not exceed 100, each value will be 
placed in the inner part of a separate interval. If the number of different values of X 
exceeds 100, some values of X may fall to the edges of these intervals. The program 
computes the value of the empirical distribution function for the upper limits c of 
these intervals separately for the compared groups (males, ( )1F c  and females, 
F2(c)), and tests their difference at k ≤ 10 different points. In the present example, 
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the program found 10 different values (between 8 and 18), but for the two lowest c 
values (8.05 and 10.05) the pooled cumulative percentage value was less than 0.05, 
and for the largest (18.05) was greater than 0.95. Hence in this case k = 7 and ε = 
0.05. Based on the F1(c) and F2(c) values corresponding to the selected 7 cutpoints, 
the program computes for each c the φ contingency-coefficient measuring the 
strength of association between the grouping variable (in the present case “gender”) 
and the dichotomized dependent variable (in the present case femininity), using ei-
ther the 2x2 chi-square test or the Fisher-exact test with the corresponding unad-
justed and adjusted two-tailed probability values. Due to the relatively small sample 
sizes in the present case, the Fisher-exact test was always performed. The results are 
summarized in Table 1. 

Table 1 

Results from a cutpoint analysis comparing males and females based  
on their California Personality Inventory/femininity level 

(n = 82) 

Detailed point-wise comparison of the two distribution functions 

c F1(c) F2(c) F1–F2 Phi Chi|Fish p-value Adjusted p 

8.05 0.083 0 0.083 0.27    

10.05 0.417 0.029 0.388 0.49 Fisher 0.0005 0.0036*  

11.05 0.500 0.100 0.400 0.39 Fisher 0.0027 0.0191**  

12.05 0.583 0.229 0.355 0.28 Fisher 0.0314 0.2196 

13.05 0.667 0.414 0.252 0.18 Fisher 0.1259 0.8814 

14.05 0.750 0.629 0.121 0.09 Fisher 0.5250 1.0000 

15.05 0.833 0.757 0.076 0.06 Fisher 0.7232 1.0000 

16.05 1.000 0.900 0.100 0.13 Fisher 0.5861 1.0000 

17.05 1.000 0.943 0.057 0.09   
18.05 1.000 1.000   

Note. The significance of phi is tested via chi-square or Fisher-exact test. Tail probability (p) is adjusted by 
means of Bonferroni method. * for 0 05p .< ** stands for p < 0.01;  

To analyze the identity of the two distributions, Kolmogorov–Smirnov’s two-sample test is applied: 
1 280J* .=  ( 0 0754p .= )  

The format of the table follows that of the corresponding computer output of ROPstat with some modifica-
tions.  

Based on the results summarized in Table 1, the most significant difference be-
tween the two genders was obtained for the cutpoint 10 05c .=  (the corresponding 
row in Table 1 is indicated by a bold type face). Below this value (that is in the range 
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0–10) we find 41.7 percent of males and 2.9 percent of females. The difference is 39 
percent, which is highly significant (adjusted 7 0 0005 0 0036p . .= ⋅ ≈ ). It is interest-
ing that the Kolmogorov–Smirnov test shows only a tendency to significance 
( 0 0754p .= ). This weakness of the test is characteristic and is due to the fact that it 
performs a global comparison of two distributions, taking into account every possible 
type of difference, whereas CPA focuses on a small number of potentially informa-
tive cutpoints. 

The psychological explanation of the obtained results may be as follows. The 
femininity of males and females differs from each other mostly in the fact that there 
exists a certain level of minimal femininity ( Fem 10= ), below which we find almost 
exclusively males. Among the females almost everybody (in the present sample 68 
out of 70) shows this minimal level of femininity. Such a strong differentiation, 
however, does not occur at the higher region of the Fem scale, which means that 
there is not a high level of femininity that would mainly be characteristic of females. 
This information is not revealed by standard analyses. 

Example 2. The relationship of birth rank to personality. This study concerns the 
relationship of birth rank to adult personality (Mózes–Vargha [2007]). Studying 
women, we compared first born subjects ( 35m = ) with the rest of the sample 
( 49n = ) in terms of six scales of Parker’s parental bonding instrument (Parker 
[1989], [1990]). Among these six scales we present results concerning father’s care. 
The measure is “retrospective”, meaning that the women reported how they remem-
ber their father cared for them during their first 16 years. 

Table 2 

Comparison of first born and other women’s responses to the father’s care scale 
 in the parental bonding instrument 

(n = 84) 

Group  Size Mean SD Minimum Maximum Skewness Kurtosis 

First born women 35 23.17 11.44 0 36 –0.829* –0.428 
Other women 49 21.96 8.075 3 34 –0.651+ –0.508 

Note. Dependent variable is father’s care. The significant skewness indicated non-normality. + stands for 
0 10p .< ; * for 0 05p .< . 
Testing the equality of population variances: 1. O’Brien test (Welch type): ( )1 0; 45 6 4 851F . . .=  

( 0 0327p .= ); 2. Levene test (Welch type): ( )1; 55 4 3 645F . .=  ( 0 0614p .= ).  

Testing the equality of population means: 1. Two-sample t test: ( )82 0 570t .=  ( 0 5704p .= ); 2. Welch’s 

modified t test: ( )57 4 0 538W . .=  ( 0 5924p .= ). 

The format of the table follows that of the corresponding computer output of ROPstat with some modifications.  
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For testing the equality of theoretical means, two-sample t-tests were applied but 
none of them indicated any significant difference between the two groups. (See Ta-
ble 2.) Nonparametric rank tests comparing the two groups were also far from being 
significant ( 0 20p .> ). However, in the present case, both the normality assumption 
and the variance homogeneity assumption are violated. On the one hand, this may 
invalidate the two-sample t-tests, on the other hand, it raises the possibility that some 
other types of differences may appear using CPA. The results of this analysis are 
summarized in Table 3. 

Table 3 

Results from CPA comparing first born and other women in terms  
of the father’s care scale in the parental bonding instrument 

(n = 84) 

Detailed point-wise comparison of the two distribution functions 

c F1(c) F2(c) F1–F2 Phi Chi|Fish p-value Adjusted p 

0.18 0.057 0.000 0.057 0.18    
1.26 0.086 0.000 0.086 0.23    
3.06 0.114 0.020 0.094 0.20    
5.22 0.143 0.041 0.102 0.18 Fisher 0.1223 1.0000 
6.30 0.171 0.041 0.131 0.22    
7.02 0.171 0.061 0.110 0.18    
8.10 0.171 0.082 0.090 0.14    
9.18 0.171 0.102 0.069 0.10    

10.26 0.171 0.122 0.049 0.07    
11.34 0.171 0.143 0.029 0.04    
12.06 0.171 0.163 0.008 0.01    
13.14 0.200 0.184 0.016 0.02 Fisher 1.0000 1.0000 
14.22 0.229 0.224 0.004 0.00    
16.02 0.229 0.245 –0.016 –0.02    
18.18 0.257 0.306 –0.049 –0.05 Fisher 0.8069 1.0000 
19.26 0.286 0.347 –0.061 –0.06    
20.34 0.314 0.367 –0.053 –0.06    
21.06 0.343 0.388 –0.045 –0.05 Fisher 0.8191 1.0000 
22.14 0.371 0.449 –0.078 –0.08    
23.22 0.429 0.510 –0.082 –0.08 Fisher 0.5112 1.0000 
24.30 0.486 0.510 –0.024 –0.02    
25.02 0.514 0.612 –0.098 –0.10 Fisher 0.3826 1.0000 
26.10 0.514 0.633 –0.118 –0.12    

(Continued on the next page.) 
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(Continuation.) 

Detailed point-wise comparison of the two distribution functions 

c F1(c) F2(c) F1–F2 Phi Chi|Fish p-value Adjusted p 

27.18 0.600 0,673 –0.073 –0.08 Fisher 0.4993 1.0000 
28.26 0.629 0.776 –0.147 –0.16 Fisher 0.1522 1.0000 
29.34 0.629 0.816 –0.188 –0.21    
30.06 0.629 0.857 –0.229 –0.26 Fisher 0.0202 0.2017 
31.14 0.657 0.939 –0.282 –0.36    
32.22 0.714 0.959 –0.245 –0.35    
33.30 0.714 0.980 –0.265 –0.39 Fisher 0.0005 0.0051** 
34.02 0.914 1.000 –0.086 –0.23    
36.18 1.000 1.000      

Note. To test the identity of the two distributions, Kolmogorov-Smirnov's two-sample test was applied: 
( )1 273J* .=  ( 0 0784p .= ). 

The format of the table follows that of the corresponding computer output of ROPstat with some modifica-
tions.  

F1 refers to the distribution function for first born women and F2 to the corresponding function for other 
women. + stands for 0 10p .< ; * for 0 05p .< , and ** for 0 01p .< . 

In our case the best discriminating point is 33 30c .=  (the corresponding row in 
Table 3 is indicated by a bold type face). A lower value, that is, 33X ≤  occurred for 
71.4 percent (25 out of 35) of first born women, and 98 percent (48 out of 49) of 
other women. These two proportions differ from each other significantly (the two-
tailed probability of the Fisher-exact test is 0 0005p .= ). This is highly significant 
even after performing the Bonferroni adjustment ( 0 005adjp .= ). Accordingly, we 
can claim that first born women are significantly more likely (in the present sample 
the chance is 28.6 percent) to report an extreme high level ( 33X > ) of father’s care 
as compared to other women (in this latter sample the chance is 2 percent). The con-
clusion is that a very high level of experienced father’s care is almost only found 
among first born women. 

Example 3. Discrimination of psychotic and normal women by means of psychiat-
ric rating scales. In the framework of a longitudinal study launched in 1967, 230 
psychotic and 41 mentally normal women were investigated by means of Overall’s 
[1968] factor construct rating scale (FCRS) and Rockland and Pollin’s [1965] ques-
tionnaire (RPQ) for psychiatric rating (Pethő [2001]). In the current analysis we used 
17 elementary scales of FCRS (F1, ..., F17) and 34 elementary scales of RPQ (R1, 
..., R33, R35). A value of zero on these scales reflects the lack of some psychiatric 
symptom, and values close to the maximum show the strong presence of a symptom. 
Preliminary analyses indicated that several of the scales were non-normally distrib-
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uted. For these variables we addressed the following question concerning the dis-
crimination of psychotic and normal subjects: If we dichotomize the continuous vari-
ables, using cutpoints identified by a CPA, and then perform DA and LRA, will we 
arrive at a better group discrimination as compared to conventional analyses based 
on the continuous variables? The following statistical analyses were undertaken: 

1. First a CPA was carried out for all continuous variables. In the 
subsequent analyses we retained only those for which the CPA re-
vealed at least one significant cutpoint. For these scales we performed 
a dichotomization at the cutpoint that had the lowest p-value. These 
scales were as follows: F1–F14, F16, F17, R1–R5, R9, R11–R16, R18, 
R20–R23, R25–R30, and R33, altogether 40 variables. 

2. Subsequently, we performed stepwise DA and LRA with first the 
original 51 continuous variables, then with the 40 dichotomized variables 
to predict group membership. The results are summarized in Table 4.  

Table 4 

Percentage of correct identifications in stepwise discriminant analyses  
and binary logistic regression analyses for the factor construct rating scale  

and Rockland and Pollin’s questionnaire scales in original and dichotomized form 

Group 
Discriminant  

analysis with original 
variables 

Discriminant  
analysis  

with dichotomized 
variables 

Logistic regression 
analyses with original 

variables 

Logistic regression 
analyses with  
dichotomized  

variables 

Psychotic (n = 230) (percent) 78.7 87.0 95.7 95.7 
Normal (n = 41) (percent) 92.7 100.0 82.9 85.4 
Total (percent) 80.8 88.9 93.7 94.1 
Number of selected variables 11 7 10 8 

Based on Table 4 we can draw the following conclusions. 

1. Using non-normal independent variables in DA may lead to sub-
stantially weaker discrimination than LRA. 

2. Using derived dichotomized variables may lead to surprisingly 
good results parallel to those found using the original variables, and 
CPA can be an efficient tool for identifying appropriate cutpoints for 
the dichotomization. As an example, we obtained 88.9 percent correct 
identification percentage in DA with 7 selected dichotomous variables, 
compared to 80.8 percent with 11 original variables. 
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3. Also in LRA the dichotomized variables performed well (with 8 
variables resulting in 94.1 percent correct classifications, as likened to us-
ing 10 original variables resulting in 93.7 percent correct classifications). 

4. Summary and conclusion 

It is an almost trivial observation that in statistical analyses the researcher should 
normally use all the relevant information in the data. In the literature there are many 
arguments against the habit of dichotomizing continuous variables, which is usually 
performed for the purpose of simplifying the analyses and presentation or for han-
dling interactions. This attitude is seen in its most extreme form in an editorial in the 
Journal of Consumer Research, entitled “Death to Dichotomizing” (Fitzsimons 
[2008]).  

The warnings against dichotomization are often good advice but the arguments 
build on assumptions of normality and linearity (for example Cohen [1983], Max-
well–Delaney [1993]). If these assumptions are valid, the argument against dichoto-
mization seems solid, however, frequently psychological variables do not follow the 
normal distribution (Micceri [1989]) and the relationships might not be linear. In 
such situations it is possible that the arguments against dichotomization of a continu-
ous variable break down. For instance, take the case of studying the relationship be-
tween one continuous independent variable, regarded as the risk factor, and one con-
tinuous dependent variable, regarded as the outcome. Theoretically, it is possible that 
there is a threshold effect in the independent variable so that there is no risk increase 
for a bad outcome below a certain level of the value in the risk factor but then, sud-
denly, a strong increase in the risk occurs. Or it is possible that the outcome is really 
generated by a normal mixture model with a relationship between the risk factor and 
the distribution membership.  

Within the context discussed formerly, we examined two analytical situations 
where dichotomization may be appropriate. The first one concerned the study of the 
relationship between a dichotomous grouping variable, regarded as the independent 
variable, and a continuous variable, considered as the dependent variable. We de-
vised a dichotomization method, cutpoint analysis, in which a limited number of cut-
points (usually not exceeding 10) in the dependent variable distribution are used for 
different dichotomizations, selecting the one that maximizes the association between 
the independent variable and the dependent variable. In two empirical examples, one 
concerning gender and femininity and the other regarding birth rank and personality, 
the results indicated significant relationships not revealed by standard analyses. 



ANDRÁS VARGHA – LARS R. BERGMAN  

HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 16 

114

These findings were partly explained by clear departure from normality in the de-
pendent variable and by the fact that the relationship had a different form in different 
regions of the variables.  

The second analytical situation that we discussed and where dichotomization may 
be appropriate concerned the discrimination between two groups by identifying an 
optimal cutpoint in one or more continuous variables, treated as the predictor(s). 
CPA can then be used to find an optimal dichotomization of the continuous vari-
able(s) in the sense that the prediction of group membership is maximized. In a third 
empirical example, CPA was used for dichotomizing a number of psychiatric rating 
scales that were used in DA or LRA. This resulted in a higher or at least as high dis-
crimination power between psychotic and normal women as was achieved using the 
original continuous variables. It appears that, for discrimination purposes, the essen-
tial information in the scales was largely binary, of qualitative nature.  

DeCoster, Iselin, and Gallucci [2009] revealed also several situations in which 
the use of dichotomization is appropriate. Specifically, they argue that it is accept-
able for researchers to use dichotomized indicators in the following circumstances: 

1. The study uses extreme group analysis. 
2. The purpose of the research is to investigate how a dichotomized 

measure will perform in the field. 
3. The underlying variable is naturally categorical, the observed 

measure has high reliability, and the relative group sizes of the di-
chotomized indicator match those of the underlying variable. 

CPA is similar to the search for an “optimal cutpoint” in biostatistics. A common 
aim in biomedical research is to investigate whether a certain continuous variable 
(regarded as covariate) has potentially prognostic relevance for a time outcome de-
pendent variable like survival. The optimal cutpoint is that value of the covariate, 
which corresponds to the most significant relationship between the covariate di-
chotomized at this cutpoint and the dichotomous outcome variable (Heinzl–Tempfer 
[2001]). Since the term “optimal” may give the false impression that this method is 
superior to other ones, Altman, Lausen, Sauerbrei, and Schumacher [1994] suggested 
that the method be called the “minimum P-value approach”. When using this 
method, some researchers are ready to ignore the multiple testing and alpha inflation 
problems since their decisions are based on the unadjusted p-value of the “optimal” 
cutpoint. This practice may lead to inconsistent results in medical prognostic re-
search (Heinzl–Tempfer [2001]). In contrast, CPA is protected against alpha inflation 
by performing only a limited number of two-group comparison tests ( 10≤ ) of scat-
tered cutpoints and by applying a Bonferroni adjustment to the p-values of the se-
lected cutpoints. 
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For  comparing  two survival  curves, the most common statistical test is the 
logrank test. This is a type of chi-square test, asymptotically equivalent to the 
likelihood ratio test, which is based on observed and expected frequencies of a 
certain time event belonging to different time points of the two survival curves 
(Bland–Altman [2004], Mantel [1966], Schoenfeld [1981]). The need for applying 
some adjustment on the p-values of repeated logrank tests is now increasingly 
recognized (Altman et al. [1994], Heinzl–Tempfer [2001], Williams et al. [2006]). 
Such an adjustment can be achieved by the following formula for an adjustment of 
the minimal P-value ( minp ) valid for large sample sizes, to allow for the multiple 
testing thanks to Lausen and Schumacher ([1992], [1996]), Miller and Siegmund 
[1982], and Heinzl [2000]: 

                                      ( ) ( ) ( )2

2

1 ε 41
εcor

z
P z z ln .

z z

⎛ ⎞− ϕ⎛ ⎞ ⎜ ⎟= ϕ − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 /5/ 

Here corP  denotes the adjusted (corrected) minimum P-value of the logrank sta-

tistic, φ is the standard normal density, z is the ( )1 2minP⎡ ⎤−⎣ ⎦ -quantile of the stan-

dard normal distribution and ε is defined as follows. The minimum P-value approach 
requires the choice of a selection interval. It is defined by the ε and ( )1 ε− -quantile 

of the observed values of the continuous covariate ( )0 ε 0 5.< < . Values outside the 
selection interval are not considered as potential cutpoints. In CPA we also seek po-
tential cutpoints between εC  and 1 εC −  percentiles, so the meaning of ε in CPA is the 
same. 

By means of formula /5/, we compared the power of the above adjustment rule 
for ε 0 01.= , 0.05 and 0.10 with CPA for a set of different nominal p-values, allow-
ing for as many as 10 cutpoints ( 10k = ) in CPA. Results summarized in Table 5 
show that CPA is much more efficient in detecting possible differences of the two 
distributions to be compared than the one defined by formula /5/. This is reflected 
by the fact that the corP  values are substantially higher – in most cases more than 
twice as large – than the corresponding adjP  values of CPA for unadjusted alpha 

values less than 0.05. Due to this, the cutpoints of CPA can be more easily signifi-
cant despite their strictly controlled Type I error level. However, we agree with 
Heinzl and Tempfer [2001] that without any biological (clinical, psychological, 
etc.) indications for the actual existence of a cutpoint even the correct application 
of the minimum P-value approach as well as CPA has to be considered methodol-
ogically questionable. 
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Table 5 

Comparison of three corrected p-values and the adjusted p-value of CPA based  
on the Bonferroni method for different unadjusted nominal p-values 

Unadjusted p-value ( )ε 0 01corP .=  ( )ε 0 05corP .=  ( )ε 0 10corP .=  ( )10corP k =  

0.10 1.0000 0.8806 0.7208 1.0000 
0.05 0.8980 0.6183 0.4916 0.5000 
0.01 0.3132 0.2087 0.1615 0.1000 
0.005 0.1859 0.1231 0.0946 0.0500 
0.001 0.0509 0.0334 0.0255 0.0100 
0.0005 0.0285 0.0186 0.0142 0.0050 
0.0001 0.0071 0.0046 0.0035 0.0010 

Note. P-values are based on based on formula /5/ ( corP  with ε 0 01.= , 0.05, and 0.10). 

A special type of the minimum P-value approach is the following method. Two 
groups are compared by means of a quantitative variable the same way as in CPA, 
looking for an “optimal” cutpoint. In this approach a cutpoint is regarded as optimal 
if the usual chi-square statistic computed from a 2×2 table based on the frequencies 
below and above the cutpoint in the two groups is maximal. Miller and Siegmund 
[1982] investigated the asymptotic distribution of this maximally selected chi-square 
statistic and provided tail probabilities and critical values for its significance for dif-
ferent nominal alpha levels and selection interval defined by ε and ( )1 ε−  the same 
way as mentioned formerly (see Tables 1 and 2 in Miller–Siegmund [1982]). Since 
the computation of these values is built on the same formula (see formula /8/ in 
Miller–Siegmund [1982] that appears in /5/), the superiority of CPA over this ap-
proach in terms of power still remains. With the same method, Koziol [1991] pro-
vided better critical values and tail probabilities based on the exact finite-sample dis-
tribution theory, Betensky and Rabinowitz [1999] generalized the asymptotic distri-
bution of the maximally selected chi-square statistic for the multi-group case, and 
Boulesteix [2006] generalized the results of Koziol to any ordinally scaled dependent 
variable in the two-group-comparison case. 

The corP  corrected p-values of the minimum P-value approach refer to the sig-
nificance of the most significant cutpoint that discriminates the two groups based on 
the continuous dependent variable, whereas the adjP  adjusted p-values of the CPA 

approach refer to the significance of all k cutpoints identified in CPA. As we could 
see formerly, in the practically relevant cases, when the corrected/adjusted p values 
are close to significance (this is true when the unadjusted p-values are less than or 
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equal to 0.01; see Table 5), the adjusted p-values of CPA are always substantially 
smaller than those of the corrected p-values of the minimum P-value approach and 
for this reason they can detect differences between the two distributions to be com-
pared with a higher efficiency. This is completely true for dependent variables where 
the number of different values do not exceed 10 (in this case CPA compares the two 
distributions with all possible cutpoints). However, if the dependent variable is really 
continuous and has large many different values, it may well happen that the selected 
set of cutpoints in CPA does not include the value of the dependent variable which 
discriminates most significantly the two groups (distributions). To have some infor-
mation about how often this unlucky situation may arise, we carried out the follow-
ing empirical investigation. 

From an archival data set including 811 Rorschach-protocols that served as the 
basis for the construction of the Hungarian Rorschach Standard (Vargha [1989]), we 
selected 236 quantitative variables of elementary Rorschach scores and computed in-
dices. The elementary scores were relative frequencies of different Rorschach re-
sponses (referring to the location, determinant, content category, popularity, or origi-
nality of the response, etc.). These relative frequencies were computed by dividing 
the number of occurrences of different Rorschach-items with the number of total re-
sponse number. As an example, the value of the Anat% Rorschach-variable was ob-
tained for a specific person by dividing the number of anatomical responses occur-
ring in the protocol by the total number of responses. More than 70 percent of these 
Rorschach-variables was practically continuous, having more than 10 different val-
ues. Out of the 811 protocols, 363 originated from mentally normal persons (MN), 
while the other 448 from institutionalized non-psychotic patients (INP).  

In order to assess merits and weaknesses of CPA, the two groups (MN and INP) 
were compared for each of the 236 Rorschach-variables:  

1. performing a CPA (with parameters 10k =  and ε 0 01.= );  
2. identifying the best discriminating point, that is the cutpoint 

within the middle ( )ε; 1 ε−  part of the scale of the dependent variable 
for which the tail probability of a 2×2 chi-square test (or the two-sided 
p-value of the Fisher-exact test if the minimal expected cell frequency 
in the 2×2 table does not exceed 20) is the smallest;  

3. performing the Kolmogorov–Smirnov two-sample test for a 
global comparison of the two distributions. 
The results of the performed analyses can be summarized as follows. 

4. For 157 out of the 236 dependent variables there were more then 
10 different values within the middle ( )ε; 1 ε−  part of the scale of the 
dependent variable. Out of these 157 variables, the smallest adjusted 
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P-value was less than or equal to 0.10 for 68 variables, and in 53 cases 
(78%) out of the 68 variables the mostly significant cutpoint was iden-
tical with the CPA cutpoint for which the tail probability of the 2×2 
chi-square test was minimal. This means that the set of the k cutpoints 
of CPA contained the best discriminating point of the dependent vari-
able in the large majority of cases. However, if one wants to decrease 
the risk of missing a relevant cutpoint, the value of k can be increased 
even above 10. Based on data of Table 5, one can conclude that even 
an increase by 50 per cent can keep the advantage of the CPA method 
over the alternative methods (for example maximizing chi-square). 

5. For a comparison of the efficiencies of CPA and the Kolmo-
gorov–Smirnov two-sample test, we cross-tabulated the significances 
of the Kolmogorov–Smirnov test and the most significant cutpoint (ad-
justed probability) of CPA for the 236 Rorschach-variables. (See Table 
6.) From Table 6 it seems to be evident that CPA highly outperforms 
the Kolmogorov–Smirnov in terms of power. It occurred only four 
times out of 236 cases that the Kolmogorov–Smirnov test was signifi-
cant (3 times at 10 per cent and once at 5 per cent level), but the CPA 
was not, whereas the opposite situation occurred in 38 cases. In addi-
tion, in 31 (out of the 38) cases, the CPA was significant at least two 
levels stronger than the Kolmogorov–Smirnov test (the opposite situa-
tion never occurred)  

Table 6 

Cross-tabulation of the significances of the Kolmogorov–Smirnov test and the most significant cutpoint  
of the cutpoint analysis for 236 different quantitative Rorschach variables 

CP Kolmogorov–
Smirnov test  0 10p .>  0 10p .<  0 05p .<  0 01p .<  0 001p .<  Total 

0 10p .>  137 18 12 5 3 175 
0 10p .<  3 7 2 5 0 17 
0 05p .<  0 1 6 7 6 20 
0 01p .<  0 0 0 6 5 11 
0 001p .<  0 0 0 0 13 13 

Total  140 26 20 23 27 236 

CPA can be regarded as a multiple test like post-hoc analyses in ANOVA. The k 
cutpoints are selected based on the distributional characteristics of the pooled sam-
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ple, independently from the differences between the two groups. The application of 
the well-known Bonferroni method guaranties that if any of the cutpoints is signifi-
cant at an adjusted alpha level, then the probability of Type I error (of the null hy-
pothesis of the equality of the two distributions binarized in this cutpoint) will not 
exceed α. Hence, if any cutpoint of CPA is significant, the two distributions can con-
fidently be declared different from each other. Since CPA gave significant results in 
many more cases than the Kolmogorov–Smirnov test, it seems in this context to be 
more appropriate for detecting differences. It is also important to add that CPA not 
only detects efficiently the inequality of the two distributions but identifies also the 
cutpoints where the differences are most salient. 

It should be noted that if the same data set is used both to dichotomize variables 
by CPA and to estimate a regression model with the dichotomized variables as pre-
dictors, the corresponding regression coefficients will obviously be biased. In such 
cases we suggest that, if the sample size is large enough, a portion (say 2/3 of the 
sample) be used for exploration and the rest for the verification of the model. If the 
sample is relatively small, the results of CPA need confirmation in an independent 
study. We assert, however, that, at a minimum, CPA is a simple but effective way of 
deriving hypotheses to be confirmed in future studies. 

To sum up, CPA is a new technique and software for finding efficiently truly sig-
nificant dichotomizing points in a quantitative variable that maximizes the associa-
tion to another dichotomous variable, which might otherwise be hidden if one were 
to use conventional statistical approaches. 

In the present article, only two special cases were treated but we believe that the 
reasoning employed merits consideration also in other ones. The most obvious exten-
sions are to the case where the grouping variable is not dichotomous and to the one 
where the relationship is studied between two variables while controlling for a third. 
ROPstat can handle the multigroup case of CPA whose nice empirical illustration 
can be found in Borbély–Vargha [2010]. 

Appendix 

The description of the computer program 

We implemented CPA in the group comparison module of ROPstat, a new statistical program 
package. It is a user-friendly statistical software that is rich in robust techniques and procedures 
with ordinally scaled variables, and includes a number of procedures for pattern and person ori-
ented analysis. 

Its free demo version can be downloaded from the site www.ropstat.com by clicking on the text 
“Download and test DEMO version in English”. A description of the package can also be found 
there. A CPA is carried out in the following way. 
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1. Run the downloaded setup program of ROPstat. As a result, a folder called 
“c:\_vargha\ropstat” will be created and a program called “ropstat.exe” will be in-
stalled in it. 

2. Run ropstat.exe. 
3. Open an input data file by means of icon “Open”. ROPstat has a special op-

tion accepting SPSS portable files imported from SPSS in *.por format and tab-
delimited files imported from Excel in *.txt format. The DEMO version of ROP-
stat accepts at most 5 variables and 500 cases but otherwise performs complete 
statistical analyses. 

4. After loading a data file, click on the menu point “Statistical analyses”, and 
within it the submenu points “Comparing groups or variables” and “One-way 
comparison of independent samples”. 

5. In the appearing program window, put the given continuous variable (X) 
from the list of variables to the box of “Dependent variables”, and a grouping vari-
able having two code values (or defined by two intervals in the variable character-
istics window of the data sheet) to the box of “Grouping variable”. 

6. In the box of “Scale type”’, change the scale type of the dependent variable 
from “interval” to “ordinal”, and change the option of “Detailed comparison of 
distributions” in this program window from “No” to “Yes”. 

7. When you click on the icon “Run” in the bottom of the program window, a 
list of the following results will appear in a text window: 

a) Nonparametric group comparison with the classical Mann–Whitney test. 
b) Two robust alternatives of the Mann–Whitney test (Brunner–Munzel and 

corrected Fligner–Policello tests). 
c) Detailed point-wise comparison of the two distributions (CPA). The two 

groups are compared by a 2×2 chi-square test if the minimal expected cell fre-
quency exceeds 20, otherwise by the Fisher-exact test. Here 

( )10, number of different values of k min X= . 
d) Kolmogorov–Smirnov’s two-sample test for a global comparison of the two 

distributions. 

8. In the CPA part of the output, the rightmost column with the header “Ad-
justed p” will contain the adjusted p values for the point-wise comparisons. If such 
a p value is less than 0.05, the corresponding score of the test variable can be re-
garded as a significant cutpoint. 
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