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STOCK RETURN DISTRIBUTION
AND MARKET CAPITALISATION

PÉTER LUKÁCS1

The paper focuses on the relationship between the distribution of stock returns and the
market capitalisation of stocks. The analysis is based on the returns of 21 stocks listed on the
Budapest Stock Exchange (BSE). First, these stocks are ranked according to their market
capitalisation, and then different moments of distribution as well as normalised moments
such as skewness and kurtosis are calculated. Results are evaluated both by charts and rank-
correlation. A significant relationship is demonstrated between the distribution of returns
and the market capitalisation.
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he basic issue of financial modelling, and specifically the modelling of stock
prices, is how to approach the uncertainty characterising the prices of different stocks, in-
dices and derivatives. The treatment of uncertainty may result in difficulties both in the-
ory and in methodology. Analysing the distributions of returns and setting up different
autoregressive volatility models there are two very popular methods to treat the previous
uncertainty. The current paper focuses on the first i.e. the distribution-based approach of
uncertainty.

Bachelier derived the first basic model of the distribution of stock returns (Bachelier;
1900). The lognormal model has a long and illustrious history. For other reasons the log-
normal model has become the workhorse of the financial asset pricing literature.

Doubts in connection with the normality of stock returns appeared relatively early in
scientific literature. Empirical research revealed extreme kurtosis and, consequently, ex-
tremely fat tails in most stock returns. Stable Pareto-Lèvy or stable Paretian distributions
(Lévy; 1925) offered an excellent opportunity to model these phenomena and have been
very popular to model fat tail problems ever since. The stable distributions are natural
generalizations of the normal one in that, as their name suggests, they are stable under ad-
dition, i. e., a sum of stable random variables is also a stable variable. However nonnor-
mal stable distributions have more probability mass in the tail areas than the normal. In
fact, the nonnormal stable distributions are so fat-tailed that their variance and all higher
moments are infinite. Sample estimates of variance or kurtosis for random variables with
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these distributions will not converge as the sample size increases, but will tend to increase
indefinitely. 

Closed-form expressions for the density functions of stable random variables are
available for only three special cases: the normal, the Cauchy and the Bernoulli cases.
Lèvy derived the following explicit expression for the logarithm of the characteristic
function )(t�  of any stable random variable X :

� � � �� �,2/tan)(sgn1Elog)(log ���������	
� tittiet itX

where 

),,,( ����  – are the four parameters that characterise each stable distribution,
]2,0(��  – is the exponent index, 

),( �����  – is the skewness index, 
),0( ���  – is the scale parameter, and 

),( �����  – is said to be the location parameter. 

When 2�� , the stable distribution reduces to normal. As �  decreases from 2 to 0,
the tail areas of the stable distribution become increasingly ‘fatter’ than the normal. When

)2,1(�� , the stable distribution has a finite mean given by � , but when ]1,0(�� , even
the mean is infinite. The parameter �  measures the symmetry of the stable distribution;
when 0��  the distribution is symmetric, and when 0��  (or 0�� ) the distribution is
skewed to the right (or left). When 1��  és 0��  we have the Cauchy distribution, and
when 1,1,2/1 ������  and 0��  we have the Bernoulli distribution.

A very good evaluation of the application of Pareto-Lévy distributions to model stock
returns can be found in the papers of Varga (1999, 2001) which also contain the results of
empirical research. The results of empirical research on the Hungarian stock market are
summarised in the work of Rappai and Varga (1997).

Research focuses on estimating the parameter � out of the four parameters of Pareto-
Lévy distributions. This parameter characterises the ‘peakedness’ of the central part of the
distribution and consequently the fatness of tails. The Hill method – to be detailed later –
leads to the consistent and the most efficient estimation of the reciprocal value of the �
parameter. This procedure allows us to model the phenomenon of ‘peakedness’ without
having presume the normality of the theoretical distribution. In addition to the Hill
method, plenty of procedures can be applied to model the fat tail problem; t-distributions
with different degrees of freedom, mixture of normal distributions, etc. The literature of
modelling fat tail problem does not have a long history; (Koedjik–Schafgans–de Vries;
1990, Koedjik–Stork–de Vries; 1992), (Kähler; 1993), (Koedjik–Kool; 1993).

This paper investigates the relationship between capitalisation and the previously de-
tailed kurtosis problem using stocks listed on Budapest Stock Exchange (BSE). While the
existence of extra kurtosis in the case of stock and index return distributions is widely ac-
cepted by researchers, the problem of asymmetry divides them significantly. This paper
also tests the relationship between capitalisation and asymmetry. Additionally the paper
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also explores a third issue. How does the risk of a risk avoiding investor change as he/she
rearranges his/her portfolio towards less capitalised stocks with respect to dispersion,
asymmetry and peakedness.

DATA AND DEFINITION OF STOCK RETURNS

The research reported in the paper involves the closing prices of 21 stocks listed on
the BSE. Stock returns are calculated according to the following formula:

                                           ,lnln)/(ln 11 ��
��� ttttt PPPPr /1/

where

tr  – is the daily return in time t, and

tP  – is the stock price in time t.

According to equation /1/ daily returns (later returns) are calculated for all the ana-
lysed 21 stocks listed on the BSE. The distribution-characteristics of the returns are com-
pared to the rank-position of market capitalisation. The first daily closing price is as of 1st

April 1997 if the given stock had already been listed at that time. In all other cases the
first daily closing price was as of the first trade-day of the given stock. The last closing
prices are as of 9th May 2001. Consequently the number of returns is 1023 in most cases,
and the minimum number of returns is 843 (in the case of Rába Magyar Vagon Rt., the
latest listed stock).

The main consideration in stock selection was to involve the six ‘market-leader’ stocks
of the BSE (Matáv, MOL, OTP Bank, Richter Gedeon, TVK, BorsodChem). Other stocks
were selected randomly in order to represent all the capitalisation segments of the BSE.

Multiplying the simple arithmetic average of prices performed the calculation of mar-
ket capitalisation for a given stock and the volume introduced to the BSE on 9th May,
2001.

The following columnar composition shows the 21 analysed stocks ranked by their
market capitalisation.

Stocks ranked by their market capitalisation
   Stock Capitalisation (HUF)    Stock Capitalisation (HUF) 

Matáv 1 437 621 758 438 Graboplast 23 114 041 039 
MOL 492 286 344 000 Mezőgép 22 988 926 080 
OTP Bank 291 126 226 500 Primagáz Hungária 13 931 460 000 
Richter Gedeon 279 475 607 681 Fotex 13 326 457 370 
TVK 90 677 577 007 Zwack Unicum 11 339 800 000 
BorsodChem 85 602 570 878 Inter-Európa Bank 7 199 055 825 
Egis 72 675 600 953 Pannon-Flax 2 406 904 923 
Pick Szeged 35 439 942 545 IBUSZ 1 129 562 885 
Rába Magyar Vagon Rt. 33 003 309 913 Pannon-Váltó 1 017 275 000 
Pannonplast 27 227 522 892 Rizikó-Factory 392 411 244 
Zalakerámia 23 727 071 258 
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Figure 1. Stocks ranked by their market capitalisation
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1000 HUF;
 logarithmic scale

The columnar composition and Figure 1 clearly show that capitalisation decreases at an
increasing pace, e.g., the capitalisation of the first, the most capitalised stock, exceeds the
capitalisation of the next ten stocks. (In Figure 1 we would like to illustrate the tendency
only. For a more accurate analysis different measures of concentration can be used.)

RISK AND CAPITALISATION

Asset price theories describe the risk of an asset by using the second and higher cen-
tral moments of the return distribution (Bodie–Kane–Marcus; 1996). In the case of even
moments (second, fourth…), increasing values imply increasing risk. In the case of odd
moments (third, fifth…), the plus or minus sign of the values indicates whether extra-risk
arises from the asymmetry of the distribution. The three-moment based portfolio selection
model developed by Gamba and Rossi (1998) suggests adding a third component to the
existing two components of the basic CAPM model (Capital Asset Pricing Model) in or-
der to represent the favourable–unfavourable effect of the asymmetry of distributions.
Positive skewness i.e., left asymmetry is favourable for a risk-avoiding investor, as the
probability of realising huge negative returns is less. In case we accept the normality of
the stock return distribution, risk can be interpreted as the second central moment, i.e.,
variance. The relationship between the range of dispersion and capitalisation is demon-
strated in Figure 2, and the relationship between the standard deviation and capitalisation
is shown in Figure 3.

Figures 2 and 3 show that both the ranges of dispersion and the standard deviation
tends to increase as capitalisation decreases. Regarding the increasing pace of decreasing
capitalisation values the linear trend fitted to the data naturally does not imply a linear
relationship between the two indicators and the capitalisation values. A Bartlett test per-
formed on the basis of the variances of the examined stock returns unquestionably proves
that standard deviations differ from each other significantly. (Test value: 3155.4, critical
value: 31.41).
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Figure 2. The range of dispersion with respect to capitalisation
(percent)
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Figure 3. Standard deviation with respect to capitalisation
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Daily returns
(percent)

PRESUMING NORMALITY

If the theoretical distribution of returns is presumed normal, the difference between
the theoretical and the empirical distribution can be detected by estimating the third and
fourth moments of the distribution from the empirical data. More precise methods are
available to test normality (e.g., Chi Squared tests) but analysing the third and fourth
moments presents a clear picture. Skewness is tested by the third, and kurtosis is tested by
the normalised fourth moment. Equations /2/, and /3/ define the applied formula to esti-
mate the third and fourth normalised moments respectively.

                                                 ,)ˆ()ˆ/(1ˆ
1

33
�
�

����

n

t
trnS ���
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                                                ,)ˆ()ˆ/(1ˆ
1

44
�
�

����

n

t
trnK ���

where

tr – is the daily return in time t,
n  – is the number of returns,
t – is the time period,
�̂ � – is the sample mean of returns, and

�
2

�̂ � – is the sample variance of returns.

Presuming the normality of the theoretical distribution a confidence interval can be
determined to the estimated values of skewness and kurtosis. Standard deviations can be
calculated for skewness and kurtosis by the formulas n/6 , and n/24 , respectively.

It is worth mentioning that adding a confidence interval to estimate skewness and
kurtosis values raises a very complex methodological problem (Shiang et al.; 1989).

Results are shown in Figures 4 and 5.

Figure 4. Kurtosis with respect to capitalisation
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The hypothesis of normality of the distributions must be rejected because the esti-
mated kurtosis values are significantly above the value of 3 of the theoretical normal dis-
tribution. Figure 4 shows that kurtosis values tend to grow as capitalisation decreases.
(The fitted linear trends do not imply a linear relationship.)

Analysing skewness values the picture is more complicated. In 8 cases out of 21, the
hypothesis of asymmetry must be rejected on a 99 percent confidence level. In addition,
results demonstrate an interesting relationship between asymmetry and capitalisation. As
far as capitalisation decreases, negative skewness values tend to zero, further turn into
positive i.e., less capitalisation value means a more positive skewness measure. Conse
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quently, from the point of view of a risk avoiding investor, the risk decreases as the deci-
sion-maker restructures its portfolio to less capitalised papers.

Figure 5. Skewness with respect to capitalisation
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Analysing kurtosis, normality had to be rejected in all cases, so more sophisticated
methods seem to be necessary to model the distribution of returns.

KURTOSIS TESTS WITH THE HILL-METHOD

A high peaked distribution in our case means that more values belong to the central
and tail parts of the distribution and fewer values belong to the medium parts as com-
pared to the normal distribution. Consequently, if kurtosis values are high, fat tails are
revealed.

This effect can be modelled by applying, on the one hand, Pareto-Levy stable distri-
butions (Palágyi; 1999), and on the other hand distribution-free methods, e.g., the Hill-
method (Lux–Varga; 1996), (Varga; 1998, 1999).

With the Hill-method (Hill; 1975), two indices characterise the fatness of tails. Speci-
fying the range that contains tail data is a basic dilemma when using this method. It is im-
portant that the Hill-indices show an approximate stability when changing the tail ranges.
The Hill-index values were calculated for 5, 10 and 25 percent tail range both for positive
and negative values. 

The Hill-indices are given in equations /4/ and /5/.

           � ��
�

��
�����

m

i
miHH XXm

1
)()( loglog)/1(/1 ,     )(...)2()1( mXXX ��� , /4/

           � ��
�

��
�����

n

j
HH nYjYn

1
)()(log/1/1 ,       )(...)2()1( nYYY ��� . /5/
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In equations /4/ and /5/:

�
�H  – is the positive tail index,

�
�H  – is the negative tail index,
m  – is the number of returns belonging to positive tail,
n  – is the number of returns belonging to negative tail,

)(iX  – are return values belonging to positive tail, and
)( jY – are return values belonging to negative tail.

Given /4/ and /5/, the more peaked the distribution is, the fatter the tails that it has,
and the smaller the value of Hill tail-index that is calculated. Figure 6 shows the Hill-in-
dex values when 25 percent of the data belongs to the upper and lower tails.

Figure 6. Hill-index values
(tail range: 25 percent)

0

0.5

1

1.5

2

2.5

3

3.5

Hill -
Hill +
Linear (Hill+)
Linear (Hill-)

M
at

áv
M

O
L

O
TP

 B
an

k
R

ic
ht

er
 G

ed
eo

n
TV

K
B

or
so

dC
he

m
Eg

is
Pi

ck
 S

ze
ge

d

R
áb

a 
M

ag
ya

r V
ag

on
 R

t.
Pa

nn
on

pl
as

t
Za

la
ke

rá
m

ia
G

ra
bo

pl
as

t
M

ez
őg

ép
Pr

im
ag

áz
 H

un
gá

ria
Fo

te
x

Zw
ac

k 
U

ni
cu

m
In

te
r-

Eu
ró

pa
 B

an
k

Pa
nn

on
-F

la
x

IB
U

SZ
Pa

nn
on

-V
ál

tó
R

iz
ik

ó-
Fa

ct
or

y

Figure 6 demonstrates that the Hill-index values do not change significantly as long as
capitalisation decreases. While, presuming normality, kurtosis tends to grow as capitali-
sation decreases, kurtosis implied by the Hill-index values does not seem to change as
capitalisation decreases. A more precise test can be conducted to test whether there is a
significant difference between the Hill-index values of stock returns. Formulas for the
positive and negative ranges respectively are demonstrated in equations /6/ and /7/.

                                               � ���
�

��
21

1

2)1/(
i

i mQ �� , /6/

                                                    �
�

��

�����

21

1

2)1/(
i

i nQ . /7/
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�Q  and �Q  are the test statistics calculated for the adequate tail ranges. �Q  and
�Q  are characterised by a 2

� distribution with 21 degrees of freedom. At the 5 percent
significance level the critical value is 32.67 in both cases. The test value is 26.81 in the
positive range and 17.78 in the negative one. Consequently, the hypothesis that the
Hill-index values do not differ from each other significantly as capitalisation changes
cannot be rejected.

ROBUST TESTS ON SYMMETRY

In the first part of this paper the hypothesis of the normality of stock returns was re-
jected. Consequently, other robust methods seem to be adequate to test symmetry. These
robust methods do not depend on the distribution. The two tests described in the follow-
ing had been created originally to test the identity of two distributions. In our case the
given distribution is split into two parts; positive and negative returns are treated as sepa-
rate distributions. By multiplying the negative values by –1, the identity of the two split
distributions can be tested. The acceptance of the hypothesis of identity means the ac-
ceptance of the hypothesis of symmetry; and, in reverse, the rejection of the hypothesis of
identity means the acceptance of the hypothesis of asymmetry. The results of the Kol-
mogorov-Smirnov test and the results of the Wilcoxon tests are demonstrated in Figure 7
respectively.

In both cases the hypothesis of symmetry can be accepted at the 5 percent significance
level. In the case of two stocks (OTP Bank and Rába Magyar Vagon Rt.) the hypothesis
of symmetry must be rejected according to the Wilcoxon test. Furthermore, Figures 7
demonstrate that the asymmetry of stock return distributions tends to decrease as capitali-
sation decreases. This result is very similar to the case of normality.

Figure 7. The result of the Kolmogorov-Smirnov test and the Wilcoxon test
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As far as capitalisation decreases, the variance and the standard deviation of returns
increase, so the risk of a risk-avoiding investor grows. This effect is reduced by the fa-
vourable change in the symmetry of stock returns. This result is in accordance with the
extended, three-moment based CAPM (Gamba–Rossi; 1998), which involves skewness
into the model.
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RESULTS ANALYSED BY RANK-CORRELATION

The correlation between the position in the capitalisation list and the different distri-
bution indicators are analysed in this section. The Spearman rank-correlation is calculated
according to equation 8:

                                                  
� �

 ,
)1(

6
1 2

1

�

�

���

�
�

nn

yx
n

i
ii

  /8/

where

ix  – is the rank value of stock ‘i’ as capitalisation decreases,
iy  – is the rank value of stock ‘i’ as for the given distribution character, and

n  – is the number of stocks under discussion, in our case it is 21.

The results are summarised in Figure 8. The results demonstrated in the following are
in accordance with the results shown by the graphic methods described earlier. Besides
the Hill-indices, a strong or medium correlation can be found between the rank in de-
creasing capitalisation and the different characters of distribution.

Figure 8. Rank correlation among the different distribution characters
and the decreasing capitalisation
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Summarising the results of the investigations the following statements can be regarded
as proven.

1. Presuming the normal theoretical distribution of stock returns, as capitalisation de-
creases, the empirical distributions tend to have higher and higher kurtosis values, thus
exhibiting greater departures from normality. The case is the reverse when analysing
skewness; as capitalisation decreases the distributions tend to become more similar to the
normal distribution.
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2. Discarding the assumption at a normal distribution of stock returns, the picture is
different from the previous case. Analysing the tails of the distributions, the fatness of the
tails was proven the same in all cases, so capitalisation has no effect on that. Robust
symmetry tests showed that the hypothesis of asymmetry of distributions must be rejected
in almost all cases; however, the symmetry tends to grow as capitalisation decreases.

The risk of a risk avoiding investor grows as he/she restructures his/her portfolio to-
wards less capitalised stocks due to the increasing variance and possibly growing kurtosis.
This effect is reduced by the favourable change in asymmetry while going less capital-
ised.
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